AGRICULTURAL AND FOOD CHEMISTRY

Purification, Characterization, and cDNA Cloning of a Myofibril-Bound Serine Proteinase from the Skeletal Muscle of Crucian Carp (*Carassius auratus*)[†]

Chuan Guo,[‡] Min-Jie Cao,^{*,‡} Guang-Ming Liu,[‡] Xiong-Shui Lin,[‡] Kenji Hara,[§] and Wen-Jin Su[‡]

College of Biological Engineering, The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, China, 361021, and Faculty of Fisheries, Nagasaki University, Nagasaki, Japan, 852-8521

A myofibril-bound serine proteinase (MBSP) was highly purified from the skeletal muscle of crucian carp (*Carasius auratus*) by acidic treatment of myofibril solution and chromatographies on Q-Sepharose and benzamidine-Sepharose 6B. MBSP revealed a main protein band of approximately 28 kDa on SDS-polyacrylamide gel electrophoresis (PAGE) and was particularly inhibited by serine proteinase inhibitors. Substrate-specificity analysis revealed that the enzyme specifically cleaved at the carboxyl side of arginine and lysine residues, suggesting the characteristics of a trypsin-type serine proteinase. MBSP gene was cloned on the basis of the N-terminal sequence and the conserved active site peptide of serine proteinases together with 5'-rapid amplification of cDNA ends (5'-RACE) and 3'-RACE. The coding region gave an amino acid sequence of 242 residues including the initiation methionine and a signal peptide of 20 residues. Amino acid residues of His⁶⁰, Asp¹⁰⁶, and Ser¹⁹⁶ consisting of the catalytic triad of serine proteinases were conserved in the sequence. Crucian carp MBSP shared relatively high identities with other serine proteinases, especially in well-conserved regions.

KEYWORDS: Crucian carp; myofibril; serine proteinase; cDNA cloning

INTRODUCTION

In the degradation of myofibrillar proteins in vivo, both lysosomal and nonlysosomal pathways are responsible (1-6). For the nonlysosomal pathway, three protein degradation systems are involved, including the ubiquitin-proteasome system (2), the calpain- μ and -m system (3), and a serine proteinase system (4-6). Concerning the serine proteinase system, the involvement of a myofibril-bound serine proteinase (MBSP) is noteworthy. MBSP was initially identified by Toyohara et al. (7) and was later purified to homogeneity from carp (Cyprinus carpio) skeletal muscle by Osatomi et al. (8). More recently, proteinases with characteristics similar to MBSP were also purified from lizard fish (9) and mouse (10), and these enzymes were characterized as trypsin-type serine proteinases. On the other hand, a myofibril-bound serine proteinase with chymotrypsin characteristic was isolated from hamster skeletal muscle, and its primary structure was determined (11). All these data suggested the ubiquitous existence of MBSP-like proteinase in the muscle of different animal species. Though the precise function of MBSP in vivo still remains unknown, much evidence

[‡] Jimei University.

revealed that such enzymes degrade myofibrillar proteins such as myosin heavy chain, α -actinin, actin, and tropomyosin effectively at neutral pH (8, 10), indicating their possibility in the involvement in myofibrillar protein metabolism.

In our previous work, we identified the existence of a myofibril-bound serine proteinase (MBSP) in the skeletal muscle of crucian carp which is supposed to be the responsible proteinase for the thermal gel degradation of fish jelly products as MBSP degrades myofibrillar proteins especially at the temperature around 55 °C under low alkaline conditions (12). Although MBSPs from common carp (8, 13) or lizard fish (9) were all purified to homogeneity, little information about their primary structures is available.

Therefore, in the present study, we tried to purify and characterize the biochemical properties of a myofibril-bound serine proteinase from the skeletal muscle of crucian carp and determine the primary structure of the proteinase by cDNA cloning.

MATERIALS AND METHODS

Fish. Crucian carp (*Carasius auratus*) was purchased alive from a local market in Jimei, Xiamen, China. The fish was subdued in iced water for 10 min and was sacrificed instantly. Skeletal muscle was collected and immediately used for experiment.

10.1021/jf062801c CCC: \$37.00 © 2007 American Chemical Society Published on Web 01/25/2007

 $^{^\}dagger$ The sequence of crucian carp MBSP has been registered in GenBank with accession no. DQ872434.

^{*} To whom correspondence should be addressed. Tel: +86-592-6180378; fax: +86-592-6180470; e-mail: mjcao@jmu.edu.cn.

[§] Nagasaki University.

Chemicals. Q-Sepharose and benzamidine-Sepharose 6B were purchased from Amersham Bioscieces. *t*-Butyloxy-carbonyl-Phe-Ser-Arg-4-methyl-coumaryl-7-amide (Boc-Phe-Ser-Arg-MCA) and other

synthetic fluorogenic peptide substrates (MCA-substrates) were obtained from Peptide Institute. Lima bean trypsin inhibitor (LBTI) was from Worthington biochemical corporation, phenylmethanesulfonyl fluoride (PMSF) and benzamidine were products from Sigma-Aldrich, 1-3carboxy-trans-2,3-epoxy-propionyl-L-leucine-4-guanidinobutylamide (E-64) was a product of Amresco, pepstatin and Pefabloc SC were purchased from Roche, and protein standard for SDS-polyacrylamide gel electrophoresis (PAGE) was from Bio-Rad. All other chemicals used were of the highest reagent grade from commercial sources.

Protein Analysis. Protein in column eluates was determined by measuring the absorbance at the wavelength of 280 nm. The concentration of proteins after each purification step was determined by the method of Lowry et al. (14) using bovine serum albumin as standard. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed according to Laemmli (15), and the gel was silver stained.

Assay of Enzyme Activity. Routinely, the proteolytic activity of crucian carp MBSP was measured using Boc-Phe-Ser-Arg-MCA as a substrate. The reaction was initiated by adding 25 μ L of enzyme solution to the incubation mixture containing 875 μ L of 20 mM Tris-HCl (pH 8.0) and 100 μ L of 10 μ M substrate in a total volume of 1 mL and was incubated at 55 °C for 20 min. The reaction was terminated by adding 1.5 mL of stopping reagent (methyl alcohol:*n*-butyl alcohol: distilled water = 35:30:35, v/v), and the fluorescence intensity of the liberated 7-amino-4-methylcoumarin (AMC) was measured by a spectrofluorometer at excitation wavelength of 380 nm and emission wavelength of 450 nm. One unit of proteolytic activity was defined as the amount that liberated 1 nmol of AMC per min under the assay conditions. Proteolytic activity assays in chromatographies were performed in duplicate and variation between duplicate samples was always <5%. The mean values were used.

Temperature dependence of MBSP activity was assayed at 25–80 °C using 20 mM Tris-HCl buffer (pH 8.0). pH dependence of enzymatic activity was assayed at 55 °C in reaction mixtures at pH 6.0–10.0 with 20 mM of different buffers (pH 6.0–7.5, phosphate buffer; pH 7.5–8.5, Tris-HCl buffer; pH 8.5–10, glycine-NaOH buffer). All analyses were carried out in triplicate, and the results are shown as average values \pm standard deviation (95% confidence levels).

Purification of the Myofibril-Bound Serine Proteinase. All purification steps were carried out at 0~4 °C. Purification procedure was carried out as described (8) with some modifications. Briefly, crucian carp skeletal muscle (300 g) was minced and homogenized using a Polytron (PT-2100, Kinematica, Switzerland) with 4-fold of 20 mM phosphate buffer (pH 7.5). After centrifugation at 10 000g for 20 min, the supernatant was discarded and the pellet was resuspended in the above buffer followed by homogenization for 1 min and centrifugation. The washing, homogenization, and centrifugation were repeated four more times to remove sarcoplasmic proteins effectively. The final resulting precipitate was further homogenized with 4-fold of 20 mM phosphate buffer (pH 6.4) containing 0.5 M KCl and 5 mM Na₄P₂O₇. After standing for 2 h, the homogenate was filtered through a nylon net to remove fibrous matter, and the resulting solution was adjusted to pH 4.0 with 3 N HCl, followed by centrifugation at 12 000g for 20 min. The pellet was discarded while the supernatant, which was regarded as crude MBSP, was adjusted to pH 8.0 using 1 N NaOH and was dialyzed against 20 mM Tris-HCl buffer (pH 8.0) and subsequently was applied to a column of Q-Sepharose $(2.5 \times 16 \text{ cm})$ equilibrated with the dialysis buffer. After washing the column with starting buffer to the absorbance at 280 nm reaching baseline, a linear gradient elution of NaCl from 0 to 0.5 M was performed in the same buffer at a flow rate of 1 mL/min. Active fractions were pooled and dialyzed against 50 mM Tris-HCl buffer (pH 8.0) containing 0.5 M NaCl and immediately were applied to a column of benzamidine-Sepharose 6B (1 \times 4 cm). Bound proteins were eluted using 10 mM HCl and the eluted fractions were collected in tubes containing 50- $100 \,\mu\text{L}$ of 1.0 M Tris-HCl buffer (pH 8.5) for immediate neutralization. Active fractions from the final stage were used for enzymatic property analysis.

Determination of the N-Terminal Amino Acid Sequence. Highly purified crucian carp MBSP from benzamidine-Sepharose 6B chromatography was applied to SDS-PAGE using a 15% gel and was electrophoretically transferred to a polyvinylidene difluoride (PVDF) membrane. After a brief staining with Coommasie brilliant blue R-250, the protein band corresponding to 28 kDa was cut out and submitted to amino acid sequencing using a protein sequencer (Applied Biosystems, model 492).

RNA Preparation and cDNA Synthesis. Total RNA was prepared from skeletal muscle using TRIzol reagent (Invitrogen, Carlsbad, CA). First-stranded cDNA was synthesized with SuperScript III Reverse Transcriptase (Invitrogen) and an Oligo(dT)₁₈ primer according to the manufacture's instruction.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR). On the basis of the N-terminal amino acid sequence, two degenerate oligonucleotide primers were designed as sense primers for PCR and nested-PCR: 5'-AT(T/C/A)AT(T/C/A)GG(T/C/A/G)GG(T/C/A/G)TA-(T/C)GA(A/G)-3' and 5'-CA(A/G)CC(T/C/A/G)TGGCA(A/G)GC-(T/C/A/G)TT(T/C)CT(T/C/A/G). The antisense degenerate primer 5'-GG(T/C/A/G)CC(T/C/A/G)CC(T/C/A/G)GA(A/G)TC(T/C/A/G)CC-3' was designed on the basis of the well-conserved active site sequence of "GDSGGP" in most serine proteinases. Using these primers and the cDNA synthesized, a fragment of MBSP gene with the size of about 500 bp was amplified by PCR in a thermal cycler, GeneAmp 9700 (Applied Biosystems, United States). The PCR program was performed as following: 3 min at 94 °C followed by 35 cycles of 1 min at 94 °C, 1 min at 48 °C, 1 min at 72 °C, and final extension of 7 min at 72 °C. The PCR product was purified from agarose gel and was cloned into pGEM-T Easy vector (Promega) followed by DNA sequence analysis.

5' and 3'-Rapid Amplification of cDNA Ends (5' and 3'-RACE). From the sequence information described above, gene-specific primers were designed for 3'-RACE. The first-strand cDNA for 3'RACE was synthesized from skeletal muscle total RNA using an Oligo (dT)-adaptor primer, 5'-GGCCACGCGTCGACTAGTAC(T)₁₇-3'. The cDNA was first amplified between forward primer 1 (5'-GTGAAGCCAATC-CCTCTGCCA-3') and the adaptor primer 5'-GGCCACGCGTCGACTAGTAC-3' and then performed a nested PCR using forward primer 2 (5'-AGTGCTTGGTTTCTGGATGG-3') and the adaptor primer. Parameters for 3'-RACE were the same as described above except the annealing temperature (52 °C). The PCR product (600 bp) was purified, cloned, and sequenced.

On the basis of the information of DNA fragments amplified using degenerate primers and 3'RACE, gene-specific primers for 5'RACE were designed. The first-stranded cDNA for 5'RACE was synthesized using a specific primer 5'-CTACAGGGCCACCTGAATCC-3' and added poly (A) into the 3'-terminus by terminal deoxynucleotidyl transferase (Invitrogen). Sense primer (5'-GGCCACGCGTCGACTAG-TAC(T)₁₇-3') and antisense primer (5'-CACCTGAATCCCCTG-GCAT-3') were used for first PCR amplification. Sense primer (5'-GGCCACGCGTCGACTAGTAC-3') and antisense primer (5'-GGCCACGCGTCGACTAGTAC-3') were used for nested-PCR amplification. The PCR program used was the same as mentioned above except the annealing temperature (50 °C). The PCR product (400 bp) was purified, cloned, and sequenced.

DNA sequencings were analyzed at the Invitrogen Biotechnological Co. Ltd (Shanghai, China) with the DNA sequencer ABI PRISM 3730 (CA). The sequencing was performed three times and the sequences were confirmed. The full-length sequence of crucian carp MBSP was obtained by overlapping the 500 bp fragment, the 3'RACE fragment (600 bp), and the 5'RACE fragment (400 bp).

The nucleotide sequence data are available in the GenBank database under the accession number DQ872434 for the crucian carp MBSP cDNA.

RESULTS

Purification of Crucian Carp MBSP. To obtain high homogeneity of myofibril-bound serine proteinase (MBSP) without possible contamination of sarcoplasmic serine proteinases, myofibril from skeletal muscle was carefully prepared and extensively washed with low ionic strength buffer until serine proteinase activity in the soluble fraction could not be detected. To enhance the efficiency of MBSP extraction, several salts

Figure 1. Chromatographic purification of crucian carp MBSP. (A) Q-Sepharose chromatography. (B) benzamidine-Sepharose 6B chromatography. Active fractions under the bar were pooled.

 $\label{eq:table_$

step	total protein (mg)	total activity (U)	specific activity (U/mg)	purity (-fold)	yield (%)
crude enzyme	404.7	237.6	0.6	1	100
Q-Sepharose	5.3	67.5	12.7	21.2	28.4
benzamidine-Sepharose 6B	1.2	18.7	15.6	26	7.9

and detergents including Brij-35 and Triton X-100 were tested to optimize the extraction conditions. The enzyme was most effectively dissociated from myofibril with an acidic treatment at pH 4.0, and the process was accompanied by the obvious denaturation of most myofibrillar proteins. The chromatographic profile on Q-Sepharose showed that a single enzymatic active peak was eluted from a linear gradient of 0-0.5 M NaCl in 20 mM Tris-HCl buffer (pH 8.0) (**Figure 1A**) while most contaminating proteins were removed. After the benzamidine-Sepharose 6B affinity column, a sharp enzymatic active peak was obtained (**Figure 1B**). Active fractions from this peak were pooled for SDS-PAGE and enzymatic property analyses.

Table 1 summarizes the purification results of MBSP from crucian carp skeletal muscle. Starting from 300 g of crucian carp muscle, about 1.2 mg of MBSP was obtained. The overall recovery was 7.9% with a 26-fold increase in specific activity. The molecular mass of MBSP was approximately 28 kDa on SDS-PAGE (**Figure 2A**), which agreed well with the gel filtration result using Sephacryl S-200 column (**Figure 2B**), suggesting the enzyme is a monomer.

Effect of Inhibitors. The effect of various proteinase inhibitors on the activity of MBSP in hydrolyzing Boc-Phe-Ser-Arg-MCA is summarized in **Table 2**. Serine proteinase inhibitors including benzamidine, Pefabloc SC, and PMSF as well as LBTI showed high degree of inhibition. Inhibitors for asparatic (pepstatin) and cysteine (E-64) proteinases did not show much effect. No inhibitory effect of EDTA, an inhibitor for metalloproteinases, was identified. This result indicated that MBSP belongs to the serine proteinase family.

Substrate Specificity. To characterize the substrate specificity of the enzyme, various fluorogenic MCA-substrates were incubated with purified MBSP, and the amounts of AMC released from the substrate were measured. Crucian carp MBSP hydrolyzed Boc-Gln-Arg-Arg-MCA most rapidly among the substrates tested (**Table 3**). Other substrates containing arginine or lysine residues were also cleaved to some degree. However, arginine residue was favored over lysine residue. MBSP revealed low activity against Z-Phe-Arg-MCA and Z-Arg-Arg-MCA, which are substrate for cathepsin L and B. No cleavage to Arg-MCA, a substrate for chymotrypsin, was identified. Combining its sensitivity to chemicals and substrate specificity, it could be concluded that crucian carp MBSP is a trypsin-type serine proteinase.

Optimum Temperature and pH. Temperature dependence of MBSP activity was assayed at 25–80 °C using 20 mM Tris-HCl buffer (pH 8.0). pH dependence of enzymatic activity was assayed at 55 °C in reaction mixtures at pH 6.0–10.0 with 20 mM of different buffers (pH 6.0–7.5, phosphate buffer; pH 7.5– 8.5, Tris-HCl buffer; pH 8.5–10, glycine-NaOH buffer). As shown in **Figure 3A**, the enzyme revealed optimum temperature

Figure 2. SDS-polyacrylamide gel electrophoresis of the purified MBSP (A) and its native molecular mass on Sephacryl S-200 gel filtration (B). (A) The purified MBSP was subjected to electrophoresis on a 12% gel followed by silver staining. Lane M, molecular marker; lane 1, purified MBSP. (B) The native molecular mass of MBSP was determined by gel filtration on Sephacryl S-200. The protein standards (closed circles) were bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa), cytochrome C (12.4 kDa), and aprotinin (6.5 kDa). Arrowhead indicates the elution position (open circle) of crucian carp MBSP.

Table 2. Effects of Various Proteinase Inhibitors on MBSP Activity^a

inhibitor	concentration (mM)	relative activity (%)
none		100
benzamidine	5	0
Pefabloc SC	1	2
PMSF	5	4
LBTI	0.1	7
E-64	0.28	105
pepstatin	0.15	97
EDTA	5	102

^a Purified crucian carp MBSP was preincubated with each reagent in 20 mM Tris-HCl buffer (pH 8.0) at room temperature for 20 min. Remaining activity was assayed at pH 8.0, 55 °C, using Boc-Phe-Ser-Arg-MCA as substrate. Proteolytic activity assays were performed in duplicate and variation between duplicate samples was always <5%. The mean values were used.

of 55 °C using Boc-Phe-Ser-Arg-MCA as substrate. The pH optimum was 8.0 (**Figure 3B**). At pH 6.5, only 28.9% enzymatic activity remained while at pH 9.5, only 13.4% activity was detected indicating that the functional pH of crucian carp MBSP is in a narrow range.

Thermal Stability. The thermostability of purified MBSP was examined by incubating the enzyme at various temperatures in 20 mM Tris-HCl buffer (pH 8.0) at 25–90 °C for 30 min, and the remaining activity was determined. As shown in **Figure 4**, the enzyme was quite stable up to 70 °C as it retained 55% of its initial activity after incubation at that temperature for 30

Table 3. Substrate Specificity of MBSP on Synthetic Fluorogenic Substrates $^{\rm a}$

substrates (10 μ M)	relative activity (%)
Boc-Phe-Ser-Arg-MCA	100
Boc-Gln-Arg-Arg-MCA	132
Boc-Val-Pro-Arg-MCA	123
Boc-Leu-Lys-Arg-MCA	40
Boc-Val-Leu-Lys-MCA	28
Boc-Glu-Lys-Lys-MCA	19
Boc-Leu-Arg-Arg-MCA	9
Z-Phe-Arg-MCA	0
Arg-MCA	0
Suc-Leu-Leu-Val-Tyr-MCA	0

 a Proteolytic activity was assayed at pH 8.0, 55 $^{\rm o}$ C, in duplicate and variation between duplicate samples was always <5%. The mean values were used.

Figure 3. Optimum temperature (A) and pH (B) of MBSP. The enzyme activity was determined using Boc-Phe-Ser-Arg-MCA as substrate. The error bars represent replicate measurements.

min, further confirming its potential myofibrillar protein degradation ability in food processing, especially in the case of fish cake production where heating treatment is always performed (12, 16).

N-Terminal Amino Acid Sequence of Purified MBSP. To analyze the N-terminal sequence, purified MBSP on SDS-PAGE was blotted onto a PVDF membrane and was subjected to protein sequencing. A sequence of 27 amino acid residues was identified as IIGGYEXRPHSQPWQAFLTDNRISXGG, where "X" represents an unidentified amino acid residue or a cysteine residue. The N-terminal fragment shared 77.8% homology to common carp MBSP (13) and was used to design degenerate sense primers for PCR and nested-PCR.

cDNA Cloning of Crucian Carp MBSP. The degenerate primers used in PCR generated a cDNA fragment of about 500 bp. On the basis of the sequence information of this fragment, gene-specific primers were subsequently designed and used in

Figure 4. Thermostability of crucian carp MBSP. MBSP solution in 20 mM Tris-HCl buffer (pH 8.0) was preincubated at various temperatures for 30 min. After preincubation, the enzyme solution was immediately cooled in ice water and the remaining activity was determined. The error bars represent replicate measurements.

3'RACE and 5'RACE. Determination of crucian carp MBSP was performed by comparing the overlapped sequence fragments

and the full-length sequence, and deduced amino acid sequence is shown in **Figure 5**.

Crucian carp MBSP was 1050 bp in length including the start codon ATG at positions 34-36, the stop codon TAA at positions 760-762, and a poly A tail. The open reading frame of crucian carp MBSP is 726 bp and the predicted protein consists of 242 amino acid residues. Combined with the information of the N-terminal amino acid sequence of native protein, it is obvious that MBSP was processed to the mature form of 222 amino acid residues by cleaving a signal peptide of 20 amino acid residues at Glu²⁰-Ile²¹. Though the calculated molecular mass of the active MBSP was 25 kDa, which is relatively smaller than the value of 28 kDa estimated by SDS-PAGE (Figure 2), the N-terminal sequence (27 amino acid residues) of the deduced mature MBSP is in complete accordance with that as determined by protein sequencing, strongly suggesting our present data is correct. A homology search in GenBank databases revealed that mature crucian carp MBSP shares relatively high homology to other serine proteinases especially in the conserved regions (Figure 6). It has 54.5% identity to chum salmon trypsin (17);

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	CAACAGATGTGCTCTCCTCCTCCAGTTGCAATGAAGACCTCTGTGTTCCTTCTTTTG	;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	MKTSVFLLL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	GTTGTGGTTGTGGCTTTCAGCTCAGCAGATGAAATCATTGGAGGTTATGAATGTAGGCCC	2
121 CACTCCCAGCCCTGCAAGCTTTCCTTACTGATATAGAATTCATGCGGAGGATCTTTG 30 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	$\underbrace{\nabla \nabla \nabla \nabla A}_{\text{H}} F \underbrace{S}_{\text{H}} S \underbrace{A}_{\text{H}} D \underbrace{E}_{\text{H}} \underbrace{I}_{\text{H}} G \underbrace{G}_{\text{H}} E \underbrace{C}_{\text{H}} P \underbrace{F}_{\text{H}} F \underbrace{F}_{$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	121	CACTCCCAGCCCTGGCAAGCTTTCCTTACTGATAATAGAATTTCATGCGGAGGATCTTTG	;
181ATTAATGAAAGATGGGCTGTGTCTGCTGCTGCTGCACGCATTTCCAGCAAGATCGTCTCAGG50INERWAVSAAHCNFQQDRIS241GTCCGCCTTGGAAGGCACAATTTGGTAACTGCTGGGAACACAGAGAGAG	30	H S Q P W Q A F L T D N R I S C G G S L	
50INERWAVSAAHCNFQQDRLS241GTCCGCCTTGGAAGGCACAATTTGGTAACTGCTGCGGAACACAGAGGAACACAGAGGAACACAGAGGAACACAGAGGAACACAGAGGAACACAGAGGAACACAGAGAGAAGA	181	ATTAATGAAAGATGGGCTGTGTCTGCTGCTCACTGCAATTTCCAGCAAGATCGTCTCAGC	;
241GTCCGCCTTGGAAGGCACAATTTGGTAACTGCTGAGAACACAGAGCAGAGGATCGAAGGG V R L G R H N L V T A E N T E Q R I E A301GAGAAGATGATTCCTTTCCCCGAAATACAATGATCGCCCCCATAACAATGATATATAT	50	INERWAVSAAHCNFQQDRLS	
70V R L G R H N L V T A E N T E Q R I E A301GAGAAGATGATTCCTTTCCCCGAAATGAATGATCGGCCTCATAACAATGATATTATGTTA90E K M I P F P K Y N D R P H N N D I M L361ATCAAGCTGAAACAACCTGCCACCCTCAACAGATATGTGAAGCCAATCCTTGCCAAAT110I K L K Q P A T L N R Y V K P I P L P N421AAATGCCCCTCTGCGGGGAGAGAGTGCTTGGTTTCTGGATGGGGCAGAACTGCAGACGC130K C P S A G E K C L V S G W G R T A D G461ATAGCTTCCACCTGCGCAGTGTTTGAAGTTGCCTGTACTCTCAGAAAAGGTGTAAGACT150I A S T L Q C L K L P V L S E K V C K T541GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATCATTAGGGGGGAGAAA770A Y G S I I T R N M F C A G F I R G G K601GACTCATGCCAGGGGGATCAGGTGGCCCTGTAGTGTGCAAAGGGCAACTGAAAGGTGTT190D S C Q G D S G G P V V C K G Q L K G V661GTTCCTTTGGCAACGGCTGTGCTAAACAAAATATCCTGGGGTTTATGCTGAGGTGTGC721CGCTACCTAGATGGATCAAATCACACATAGCTAGTAACTAAC	241	GTCCGCCTTGGAAGGCACAATTTGGTAACTGCTGAGAACACAGAGCAGAGGATCGAAGCG	;
301GAGAAGATGATTCCTTTCCCGAAATACAATGATCGGCCTCATAACAATGATATTATGTTA POEKMIPFPKYNDRPHNNDIML361ATCAAGCTGAAACAACCTGCCACCCTCAACAGATATGTGAAGCCAATCCCTCTGCCAAAAT IINKLKQPATLNRYVKPIPLPN421AAATGCCCCTCTGCGGGAGAGAAGTGCTTGGTTTCTGGATGGGGCAGAACTGCAGACGGCGAGACTGCAGACGGCGAGAACTGCAGACGGCCCTGTACTCTCAGAAAAGGTGGTGTAAGAACTAAGGRTADG421AAAGCTTCCACCCTGCAGGTGTTGAAGTGGCCTGTGCTGCACTCTCAGAAAAGGGGGGAACTGCAGAGGGGAAGGGGAGAACTGCACCCCCCGCGGGGGCACGCGAGCGGACGGA	70	V R L G R H N L V T A E N T E Q R I E A	
90 E K M I P F P K Y N D R P H N N D I M L 361 ATCAAGCTGAAACAACCTGCCACCTCAACAGATATGTGAAGCCAATCCTGGCAAAT 10 I K L K Q P A T L N R Y V K P I P L P N 421 AAATGCCCCTCTGCGGGAGAAAGTGCTTGGTTTCTGGATGGGCAGAACTGCAGACGGC R C P S A G E K C L V S G W G R T A D G 481 ATAGCTTCCACCTGCAGTGTTTGAAGTGCCTGTACTCTCAGAAAAGGTGTGTAAGACT 150 I A S T L Q C L K L P V L S E K V C K T 541 GCATATGGTTCAATAATAACTAGAAACAGTTCTGCGCTGGATTCATTAGGGGAGGAAA 170 A Y G S I I T R N M F C A G F I R G G K 601 GACTCATGCCAGGGGGGATTCAGGTGGCCCTGTAGTGTGGCAAAGGGCAACTGAAAGGTGTT 190 D S C Q G D S G G P V V C K G Q L K G V 661 GTTTCCTTTGGCAACGGCTGGCCTAAACCAAATATCCTGGGGTTTATGCTGAGGTGTGC 210 V S F G N G C A K P K Y P G V Y A E V C 721 CGCTACACTAGATGAATGCATCATCCACCATAGCTAGTAGTAACTAAC	301	GAGAAGATGATTCCTTTCCCGAAATACAATGATCGGCCTCATAACAATGATATTATGTTA	
361ATCAAGCTGAAACAACCTGCCACCCTCAACAGATATGTGAAGCCAATCCTTTGCCTCTGCCAAAT110IKLKQPATLNRYVKPIPLPN421AAATGCCCCTCTGCGGGAGAGAGTGCTTGGTTGGTTGGATGGGGGCAGAACTGCAGACGGCKCPSADG431ATAGCTTCCACCCTGCGGGGGGGGGGGAGGTGGCCGTGGATCCTCCAGAAAAGGTGGTGTAAGACTIADGG481ATAGCTTCCACCCTGCAGTGTTTGAAGTTGCCTGTACTCTCAGAAAAGGTGTGTAAGACTIADGG150IASTLQCLKLPVLSEKVCKT541GCATATGGTTCAATAAAAAAACTAGAAACATGTTCTGCGGGAGGAAACTGCAAAAGGGGAGGAGAAAAYGSIITRNMFCAGFIRGGKT541GCATATGGTTCAAAAAAAGGGGGGGCCCTGTGGCTGAGTGGGCCCAGGGGGAACTGAAAAGGGGGGAACTGAAAAGGGGGGGAACTGAAAAGGGGGGAAAAAGGGGGGAACTGAAAAGGGGGGAACTGAAAAGGGGGGAACTGAAAAGGGGGGGAACTGAAAAGGGGGGGAACTGAAAAGGGGGGGAACTGAAAGGGGGGGTTATGCTGGAGGGGGGGG	90	E K M I P F P K Y N D R P H N N D I M L	
110IKLKQPATLNRYVKPIPLPN421AAATGCCCCTCTGCGGGGGGGGGGGGGGGGGGGGGGGGG	361	ATCAAGCTGAAACAACCTGCCACCCTCAACAGATATGTGAAGCCAATCCCTCTGCCAAAT	ŧ
421AAATGCCCCTCTGCGGGAGAGAAGTGCTTGGTTTCTGGATGGGGCAGAACTGCAGACGGC130K C P S A G E K C L V S G W G R T A D G130ATAGCTTCCACCCTGCAGTGTTTGAAGTGCCTGTACTCTCAGAAAAGGTGTGTAAGACT150I A S T L Q C L K L P V L S E K V C K T541GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATTCATTAGGGGAGGGA	110	I K L K Q P A T L N R Y V K P I P L P N	
130RCPSAGEKCLVSGWGRTADG481ATAGCTTCCACCCCTGCAGTGTTTGAAGATGCCCTGTACTCTCCAGAAAAGGTGTGTGT	421	AAATGCCCCTCTGCGGGAGAGAGAGTGCTTGGTTTCTGGATGGGGCAGAACTGCAGACGGC	2
481ATAGCTTCCACCCTGCAGTGTTTGAAGTTGCCTGTACTCTCAGAAAAGGTGTGTAAGACT150I A S T L Q C L K L P V L S E K V C K T541GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATTCATTAGGGGAGGGA	130	K C P S A G E K C L V S G W G R T A D G	
150IASTLQCLKLPVLSEKVCKT541GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATTCATTAGGGGGGGG	481	ATAGCTTCCACCCTGCAGTGTTTGAAGTTGCCTGTACTCTCAGAAAAGGTGTGTAAGACT	Ļ
541GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATTCATTAGGGGAGGGA	150	IASTLQCLKLPVLSEKVCKT	
170AYGSIITRNMFCAGFIRGGR601GACTCATGCCAGGGGGGATTCAGGGGGGCCCTGTAGTGGTGGCAAAGGGCAACTGAAAGGGCGTGTDSCQGDSGQLKGV661GTTTCCTTTGGCAACGGCTGTGCTAAACCAAAATATCCTGGGGGTTTATGCTGAGGGGGGGG	541	GCATATGGTTCAATAATAACTAGAAACATGTTCTGCGCTGGATTCATTAGGGGAGGGA	
601 GACTCATGCCAGGGGGATTCAGGTGGCCCTGTAGTGTGCAAAGGGCAACTGAAAGGTGTT 190 D S C Q G D S G G P V V C K G Q L K G V 661 GTTTCCTTTGGCAACGGCTGTGCTAAACCAAAATATCCTGGGGGTTTATGCTGAGGGTGTGC 210 V S F G N G C A K P K Y P G V Y A E V C 721 CGCTACACTAGATGGATCAAATCCACCATAGCTAGTAACTAAC	170	AYGSIIT RNMFCAGFIRGGK	
190 D S C Q G D S G G P V V C K G Q L K G V 661 GTTTCCTTTGGCAACGGCTGTGCTAAACCAAAATATCCTGGGGTTTATGCTGAGGTGTGC 210 V S F G N G C A K P K Y P G V Y A E V C 721 CGCTACACTAGATGGATCAAATCCACCATAGCTAGTAACTAAC	601	GACTCATGCCAGGGGGATTCAGGTGGCCCTGTAGTGTGCAAAGGGCAACTGAAAGGTGTT	ţ.
 661 GTTTCCTTTGGCAACGGCTGTGCTAAACCAAAATATCCTGGGGTTTATGCTGAGGTGTGC 210 V S F G N G C A K P K Y P G V Y A E V C 721 CGCTACACTAGATGGATCAAATCCACCATAGCTAGTAACTAAC	190	D S C Q G D S G G P V V C K G Q L K G V	
210V S F G N G C A K P K Y P G V Y A E V C721CGCTACACTAGATGGATGAAATCCACCATAGCTAGTAACTAAC	661	GTTTCCTTTGGCAACGGCTGTGCTAAACCAAAATATCCTGGGGTTTATGCTGAGGTGTGC	:
721 CGCTACACTAGATGGATCAAATCCACCATAGCTAGTAACTAAC	210	V S F G N G C A K P K Y P G V Y A E V C	
 RYTRWIKSTIASN* 781 TGGTCCTTTACAAGTCCTTTTCTATAATATCTGTAATCAAGCCCAAGTCCTTTTAAGGCA 841 AGTCATCCAACTTTGAAATGCCTCTCAGACAGCTTTTTTTT	721	CGCTACACTAGATGGATCAAATCCACCATAGCTAGTAACTAAC	ŗ
781 TGGTCCTTTACAAGTCCTTTTCTATAATATCTGTAATCAAGCCCAAGTCCTTTTAAGGCA 841 AGTCATCCAACTTTGAAATGCCTCTCAGACAGCTTTTTTATTCTTGCCTTCACCAGTTTG 901 TGATTGGCTCTTTTATTTAGAAAGCGGGACTATTCATTTTCCTTTTTCTATTTACTTTTG 961 CATTTTTGAGTGCACCAGCTTTGTATATCTTAATCTTTGAATTAAATTCACTCTGAAATA	230	RYTRWIKSTIASN*	
 841 AGTCATCCAACTTTGAAATGCCTCTCAGACAGCTTTTTTATTCTTGCCTTCACCAGTTTG 901 TGATTGGCTCTTTTATTTAGAAAGCGGGACTATTCATTTTCCTTTTTCTATTTACTTTTG 961 CATTTTTGAGTGCACCAGCTTTGTATATCTTAATCTTTGAATTAAATTCACTCTGAAATA 	781	TGGTCCTTTACAAGTCCTTTTCTATAATATCTGTAATCAAGCCCAAGTCCTTTTAAGGCA	•
901 TGATTGGCTCTTTTATTTAGAAAGCGGGACTATTCATTTTCCTTTTTCTATTTACTTTG 961 CATTTTTGAGTGCACCAGCTTTGTATATCTTAATCTTTGAATTAAATTCACTCTGAAATA	841	AGTCATCCAACTTTGAAATGCCTCTCAGACAGCTTTTTTATTCTTGCCTTCACCAGTTTG	;
961 CATTTTTGAGTGCACCAGCTTTGTATATCTTAATCTTTGAATTAAATTCACTCTGAAATA	901	TGATTGGCTCTTTTATTTAGAAAGCGGGACTATTCATTTTCCTTTTTCTATTTACTTTTG	;
	961	CATTTTTGAGTGCACCAGCTTTGTATATCTTAATCTTTGAATTAAATTCACTCTGAAATA	

1021 Алалалалалалалалалалалалалалал

Figure 5. Nucleotide and deduced amino acid sequences of crucian carp MBSP. Residue numbers for both nucleotide and amino acid are indicated in the left of each row. A cleavage site (open triangle) for a signal peptide is shown. The signal peptide sequence is dot-lined and a line indicates the N-terminal amino acid sequence of mature MBSP. The His⁶⁰, Asp¹⁰⁶, and Ser¹⁹⁶ that form the triad active site of serine proteinase are marked as closed triangles.

crucian carp MBSP	IIGGYECRPHSOPWOAFLTDNRISCGGSLINERNA	35
chum salmon trypsin	IVGGYECKAYSOPHOVSLNSGYHFCGGSLVNENWV	- 35
cod trypsin-I	IVGGYECTKHSQAHQVSLNSGYHFCGGSLVSKDWV	35
porcine trypsin	IVGGYTCAANSIPYOVSLNSGSHFCGGSLINSOWV	35
rat trypsin-LA	IVGGYTCPEHSVPYQVSLNSGYHFCGGSLINDQWV	- 35
hamster mekratin	IIGGVESKPHSRPYMAHLEIVTERGFTASCGGFLITPEFV	40
human KLK14	IIGGHTCTRSSOPWOAALLAGPRR., RFLOGGALLSGOWV	38
	* ** * * *** *	
crucian carp MBSP	VSAAHCNFOODRLSVRIGRHNLVTAENTEORIEAEKMIPF	75
chum salmon trunsin	VSAAHC VKSRVEVRLGEHNTKVFEGSFOFTSSSRVTRH	72
ord trunsinel	VCALLC: VKSVI DVDI CENHIDVNECTEOVISSOVIDH	
cou crypsin-r	VERAMO VERTORDI COMMUNICATE DI 100001 INI	77
rat truncin_Th	VORTER, TRONTOVREDCHATDADDARDOF TAVANTTRA	
		7
namster mekratin	MIAARCA GREITVILGAHUVSRAESIQURIRVRRQIAR	70
numan KLKI4	TTAARUG. RPILQVALGKHNLRRWEATQOVLRVVRQVTH	
	**** * ** * *	
crucian carp MBSP	PKINDRPHNNDIMLIKLKQPATLNRIVKPIPLPNKCPS	113
chum salmon trypsin	PNYSSYNIDNDIMLIKLSKPATLNTYVQPVALPSSCAP	111
cod trypsin-I	PNYSSYNINNDIMLIKLTKPATLNQYVHAVALPTECAA	111
porcine trypsin	PNFNGNTLONDIMLIKLSSPATLNSRVATVSLPRSCAA	111
rat trypsin-IA	PNYSSWTLNNDIMLIKLSSPVKLNARVAPVALPSACAP	- 111
hamster mekratin	PNYSFYSKLHDIMFLKLQKKAKEDPSVDTIPLPSPSDFLK	- 116
human KLK14	PNYNSRTHDNDLMLLQLQQPARIGRAVRPIEVTQACAS	114
	* ** * *	
crucian carp MBSP	AGEKCLVSCWGRTADG LASTLOCLKLPVLSEKVCKTA	150
chum salmon trypsin	AGTMCTVSGWGNTMSS, TADKNKLOCLNIPILSYSDONNS	150
cod trypsin-I	DATMCTVSGWGNTMSS, VADGDKLOCLSLPILSHADCANS	150
porcipe trypsin	AGTECLISG@GNTKSSGSSYPSLLOCLKAPVLSDSSCKSS	151
rat trupsin-IA	AGTOCLISGWGNTI SNGVNNPDLLOCVDAPUT SOADCEAA	151
hamster mekratio	POKMCPAACMOPTOVT, EPTSERI DEVKLATNOKCACKN.	154
human KIKIA	DOTEODUCOUCTION TO THE TO BRUE OT MUT THE TO BRUE OF THE TO BRUE O	15/
	* *** * *	1.01
annaise assa MOCD		10/
chucian carp moor	VDONTENINGCOOPT CONTRACTOR C	100
end tweete-T		100
		190
porcine trypsin	YPGUITGNMICVGFLEGGKDSCUGDSGGPVVCNGQLQGIV	191
rat trypsin-LA	YPGETTSSMICVGFLEGGKDSCQGDSGGPVVCNGQLQGIV	131
hamster mekratin	YYHYHYDFQVCVGSPRRVRSAYKGDSGGPLLCAGVAHGIV	196
human KLK14	YPRTITFGMVCAGVPQGGKDSCQGDSGGPLVCRGQLQGLV	194
	* ** *****	
crucian carp MBSP	SFGNG.CAKPKYPGVYAEVCRYTRWIKSTIASN	222
chum salmon trypsin	SWGYG.CAEPGNPGVYAKVCIFNDWLTSTMATY	222
cod trypsin-I	SWGYG.CAERDHPGVYAKVCVLSGWVRDTMANY	222
porcine trypsin	SWGYG.CAQKNKPGVYTKVCNYVNWIQQTIAAN	223
rat trypsin-IA	SWGYG.CALPONPGVYTKVCNFVGWIQDTIAAN	223
hamster mekratin	SYGRGDAKPPAVFTRISSYVPWINIVIKASS	226
human KLK14	SWGMERCALPGYPGVYTNLCKYRSWIEETMRDK	223

Figure 6. Alignment of primary structures of mature serine proteinases. The mature sequence of crucian carp MBSP was compared with that of chum salmon trypsin (*17*), cod trypsin-I (*18*), porcine trypsin (*19*), rat trypsin (*17*), hamster mekratin (*11*), and human KLK14 (*20*). Mekaratin is a chymotrypsin-type serine proteinase from the skeletal muscle of hamster while KLK14 is a trypsin-type serine proteinase from human kallikrein family. Identical amino acid residues are asterisked.

52.2% to cod trypsin-I (18); 55.1% to porcine trypsin (19); 54.2% to rat trypsin-IA (17); 36.2% to hamster mekratin (11), a chymotrypsin-type serine proteinase from the skeletal muscle of hamster; and 47.2% to KLK14 (20), a trypsin-type serine proteinase from human. The catalytic triad (His⁶⁰, Asp¹⁰⁶, and Ser¹⁹⁶) of serine proteinases is well conserved in crucian carp MBSP.

DISCUSSION

In the present study, by acidic treatment of myofibril, ionexchange chromatography, and affinity chromatography, we have successfully isolated crucian carp MBSP from skeletal muscle. Approximately 1.2 mg MBSP was obtained from 300 g skeletal muscle, with a yield of 7.9%. Such a recovery is the highest compared with MBSPs from common carp (8) and lizard fish (9). Two reasons were proposed. The first is the content of MBSP in the muscle of crucian carp is higher than that in common carp and lizard fish, while the second is that the present purification method is more effective than previous methods used (8, 9). The molecular mass of the enzyme was estimated as approximately 28 kDa both on SDS-PAGE (**Figure 2A**) and gel filtration on Sephacryl S-200 column (**Figure 2B**). This value agrees well with that of common carp MBSP (8) while it is different from that of marine lizard fish MBSP which was identified as a homodimer consisting of two identical subunits (28 kDa) (9). This phenomenon may be explained as crucian carp and common carp are all freshwater fish and shared high species homology during genetic evolution while lizard fish is marine fish and its genetic relationship to crucian carp and common carp is much farther.

Serine proteinase inhibitors such as Pefabloc SC, benzamidine, STI, and PMSF effectively inhibited MBSP activity, while inhibitors toward asparatic proteinase (pepstatin), cysteine proteinase (E-64), and metalloproteinase (EDTA) did not show much effect. Substrate-specificity assay toward MCA-substrates revealed that only those with arginine and lysine residues at P₁ were hydrolyzed while substrates for chymotrypsin-type serine proteinase (Suc-Leu-Leu-Val-Tyr-MCA) and for cathepsin B, L (Z-Phe-Arg-MCA) and for aminopeptidase (Arg-MCA) were not affected. This substrate specificity is quite similar to that of common carp MBSP (8, 13) but is something different from that of lizard fish MBSP which specifically cleaves at the carboxyl side of arginine residue (9). Combining inhibitor susceptibility with substrate specificity, it is obvious that crucian carp MBSP is also a trypsin-type serine proteinase.

The full-length sequence of crucian carp MBSP consists of 242 amino acid residues. A fragment of 20 residues including the initiation methionine was regarded as signal peptide as this fragment is absent in the N-terminal sequence of purified MBSP. Comparing the primary sequence of MBSP with other serine proteinases, mature MBSP shared relatively high identities to chum salmon trypsin (17), cod trypsin-I (18), rat trypsin-IA (17), porcine trypsin (19), hamster mekratin (11), and KLK14 from human skeletal muscle (20). Although the primary sequence of common carp MBSP has not been determined yet, crucian carp MBSP shared 77.8% identity with common carp MBSP in the N-terminal 27 amino acid residues (13). This homology is the highest among serine proteinases compared, suggesting the close relationship between crucian carp and common carp. As shown in Figure 5, the catalytically important residues in serine proteinases, that is, His⁶⁰, Asp¹⁰⁶, and Ser¹⁹⁶, were well conserved. There are 12 Cys residues at positions 27, 45, 61, 131, 138, 156, 167, 181, 192, 202, 216, and 229 that may form six intramolecular disulfide bonds necessary for full activity. Combined with the N-terminal amino acid sequence data, it is obvious that zymogen activation of MBSP occurs between Glu²⁰ and Ile²¹. No potential glycosylation motif in the sequence, however, could be identified, suggesting crucian carp MBSP is not a glycoprotein. Thus, the molecular mass difference of MBSP as estimated by SDS-PAGE (28 kDa) and calculated from nucleotide sequence (25 kDa) may ascribe to the mobility of the enzyme on the gel.

Serine proteinases play important roles in the processing of polypeptide precursors and many biological processes (21). Recently, more and more transmembrane serine proteinases have been purified and characterized and their sequence has been determined (22). The identification of serine proteinases in the skeletal muscle of hamster (11) and mouse (10, 23) has revealed the importance of such enzymes in the metabolism of muscle. However, different from MBSP, hamster serine proteinase mekratin is chymotrypsin-like and the molecular weight of mouse serine proteinase (120 kDa) is much higher than crucian carp MBSP. Although human kallikreins (KLK) composing at least 15 members are trypsin-like serine proteinases and are expressed in prostate and skeletal muscle under normal conditions (20), sequence homology analysis revealed their difference

(Figure 6). Crucian carp MBSP is also different from a more recently identified transmembrane serine protease TMPRSS6, which is mainly expressed strongly in thyroid and weakly in trachea and is quite possibly a glycosylated protein (24).

Although the existence of enzymes similar to crucian carp MBSP has been identified in the skeletal muscle of common carp (8), lizard fish (9), and mouse (5, 10), little information is available in revealing their primary structures. Our present data gave the first report of the full-length sequence of MBSP. Combining the enzymatic characteristics and the sequence alignment, it is obvious that crucian carp MBSP is a unique trypsin-type serine proteinase, which is expressed in normal skeletal muscle. Further study to reveal the role of MBSP in the involvement in the nonlysosomal pathway of intracellular protein degradation is clearly of importance. The physiological function as well as its variation of expression level at different culturing seasons also needs to be clarified.

LITERATURE CITED

- Bechet, D.; Tassa, A.; Taillandier, D.; Combaret, L.; Attaix, D. Lysosomal proteolysis in skeletal muscle. *Int. J. Biochem. Cell Biol.* 2005, *37*, 2098–2114.
- (2) Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533.
- (3) Bartoli, M.; Richard, I. Calpains and muscle wasting. Int. J. Biochem. Cell Biol. 2005, 37, 2115–2133.
- (4) Gronostajski, R. M.; Pardee, A. B.; Goldberg, A. L. The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J. Biol. Chem. 1985, 260, 3344–3349.
- (5) Kay, J.; Siemankowski, R. F.; Siemankowski, L. M.; Goll, D. E. Degradation of smooth-muscle myosin by trypsin-like serine proteinases. Biochem. J. **1982**, 201, 267–278.
- (6) Morris, C. A.; Morris, L. D.; Kennedy, A. R.; Sweeney, H. L. Attenuation of skeletal muscle atrophy via protease inhibition. *J. Appl. Physiol.* **2005**, *99*, 1719–1727.
- (7) Toyohara, H.; Kinoshita, M.; Shimizu, Y.; Sakaguchi, M. A group of novel latent serine proteinases degrading myosin heavy chain in fish muscle. *Biomed. Biochim. Acta* **1991**, *50*, 717– 720.
- (8) Osatomi, K.; Sasai, H.; Cao, M. J.; Hara, K.; Ishihara, T. Purification and characterization of myofibril-bound serine proteinase from carp Cyprinus carpio ordinary muscle. *Comp. Biochem. Physiol.* **1997**, *116*, 183–190.
- (9) Cao, M. J.; Hara, K.; Osatomi, K.; Ishihara, T. Identification of a myofibril-bound serine proteinase (MBSP) in the skeletal muscle of lizard fish Saurida wanieso which specifically cleaves the arginine site. *Comp. Biochem. Physiol.* **2000**, *125*, 255–264.
- (10) Sangorrin, M. P.; Martone, C. B.; Sanchez, J. J. Myofibril-bound serine protease and its endogenous inhibitor in mouse: extraction, partial characterization and effect on myofibrils. *Comp. Biochem. Physiol.* **2002**, *131*, 713–723.
- (11) Holt, J. C.; Hatcher, V. B.; Caulfield, J. B.; Norton, P.; Umeda, P. K.; Melendez, J. A.; Martino, L.; Mudzinsky, S. P.; Blumenstock, F.; Slayter, H. S.; Margossian, S. S. Cloning of the cDNA

and nucleotide sequence of a skeletal muscle protease from myopathic hamsters. *Mol. Cell Biochem.* **1998**, *181*, 125–135.

- (12) Cao, M.-J.; Jiang, X.-J.; Zhong, H.-C.; Zhang, Z.-J.; Su, W.-J.; Degradation of myofibrillar proteins by a myofibril-bound serine proteinase in the skeletal muscle of crucian carp (Carasius auratus). *Food Chem.* **2006**, *94*, 7–13.
- (13) Cao, M.-J.; Osatomi, K.; Pangkey, H.; Hara, K.; Ishihara, T. Cleavage specificity of a myofibril-bound serine proteinase from carp (Cyprinus carpio) muscle. *Comp. Biochem. Physiol.* **1999**, *123B*, 399–405.
- (14) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the folin phenol reagent. *J. Biol. Chem.* **1951**, *193*, 265–275.
- (15) Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. *Nature* 1970, 227, 680–685.
- (16) Cao, M.-J.; Hara, K.; Osatomi, K.; Tachibana, K.; Izumi, T.; Ishihara, T. Myofibril-bound serine proteinase (MBP) and its degradation of myofibrillar proteins. *J. Food Sci.* **1999**, *64*, 644– 647.
- (17) Toyota, E.; Ng, K. K.; Kuninaga, S.; Sekizaki, H.; Itoh, K.; Tanizawa, K.; James, M. N. Crystal structure and nucleotide sequence of an anionic trypsin from chum salmon (Oncorhynchus keta) in comparison with Atlantic salmon (Salmo salar) and bovine trypsin. J. Mol. Biol. 2002, 324, 391–397.
- (18) Male, R.; Lorens, J. B.; Smalas, A. O.; Torrissen, K. R. Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. *Eur. J. Biochem.* **1995**, *232*, 677– 685.
- (19) Hermodson, M. A.; Ericsson, L. H.; Neurath, H.; Walsh, K. A. Determination of the amino acid sequence of porcine trypsin by sequenator analysis. *Biochemistry* **1973**, *12*, 3146–3153.
- (20) Hooper, J. D.; Bui, L. T.; Rae, F. K.; Harvey, T. J.; Myers, S. A.; Ashworth, L. K. Clements, J. A. A novel kallikrein serine protease expressed by normal and malignant prostatic epithelium. *Genomics* **2001**, *73*, 117–122.
- (21) Nakayama, K. A mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. *Biochem. J.* **1997**, *327*, 625–635.
- (22) Szabo, R.; Wu, Q.; Dickson, R. B.; Netzel-Arnett, S.; Antalis, T. M.; Bugge, T. H. Type II transmembrane serine proteases. *Thromb. Maemost.* **2003**, *90*, 185–193.
- (23) Sangorrin, M. P.; Martone, C. B.; Sanchez, J. J. Identification of a myofibril-bound serine protease and its endogenous inhibitor in mouse skeletal muscle. *Int. J. Biochem. Cell Biol.* 2000, *32*, 1213–1222.
- (24) Park, T. J.; Lee, Y. J.; Kim, H. J.; Park, H. G.; Park, W. J. Cloning and characterization of TMPRSS6, a novel type 2 transmembrane serine protease. *Mol. Cells* 2005, *19*, 223–227.

Received for review September 30, 2006. Revised manuscript received December 5, 2006. Accepted December 14, 2006. Sponsored by National Natural Science Foundation of China (No. 30571450), Key Project of International Science and Technology Cooperation of Fujian Province (2005I012) and the Foundation for Innovative Research Team of Jimei University (2006A002).

JF062801C